3.12.59 \(\int \frac {x (a+b \arctan (c x))}{(d+e x^2)^2} \, dx\) [1159]

3.12.59.1 Optimal result
3.12.59.2 Mathematica [A] (verified)
3.12.59.3 Rubi [A] (verified)
3.12.59.4 Maple [A] (verified)
3.12.59.5 Fricas [A] (verification not implemented)
3.12.59.6 Sympy [F(-1)]
3.12.59.7 Maxima [F(-2)]
3.12.59.8 Giac [F]
3.12.59.9 Mupad [B] (verification not implemented)

3.12.59.1 Optimal result

Integrand size = 19, antiderivative size = 91 \[ \int \frac {x (a+b \arctan (c x))}{\left (d+e x^2\right )^2} \, dx=\frac {b c^2 \arctan (c x)}{2 \left (c^2 d-e\right ) e}-\frac {a+b \arctan (c x)}{2 e \left (d+e x^2\right )}-\frac {b c \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} \left (c^2 d-e\right ) \sqrt {e}} \]

output
1/2*b*c^2*arctan(c*x)/(c^2*d-e)/e+1/2*(-a-b*arctan(c*x))/e/(e*x^2+d)-1/2*b 
*c*arctan(x*e^(1/2)/d^(1/2))/(c^2*d-e)/d^(1/2)/e^(1/2)
 
3.12.59.2 Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.08 \[ \int \frac {x (a+b \arctan (c x))}{\left (d+e x^2\right )^2} \, dx=\frac {a \sqrt {d} \left (c^2 d-e\right )-b \sqrt {d} e \left (1+c^2 x^2\right ) \arctan (c x)+b c \sqrt {e} \left (d+e x^2\right ) \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} e \left (-c^2 d+e\right ) \left (d+e x^2\right )} \]

input
Integrate[(x*(a + b*ArcTan[c*x]))/(d + e*x^2)^2,x]
 
output
(a*Sqrt[d]*(c^2*d - e) - b*Sqrt[d]*e*(1 + c^2*x^2)*ArcTan[c*x] + b*c*Sqrt[ 
e]*(d + e*x^2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(2*Sqrt[d]*e*(-(c^2*d) + e)*(d 
 + e*x^2))
 
3.12.59.3 Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.97, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {5509, 303, 216, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x (a+b \arctan (c x))}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 5509

\(\displaystyle \frac {b c \int \frac {1}{\left (c^2 x^2+1\right ) \left (e x^2+d\right )}dx}{2 e}-\frac {a+b \arctan (c x)}{2 e \left (d+e x^2\right )}\)

\(\Big \downarrow \) 303

\(\displaystyle \frac {b c \left (\frac {c^2 \int \frac {1}{c^2 x^2+1}dx}{c^2 d-e}-\frac {e \int \frac {1}{e x^2+d}dx}{c^2 d-e}\right )}{2 e}-\frac {a+b \arctan (c x)}{2 e \left (d+e x^2\right )}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {b c \left (\frac {c \arctan (c x)}{c^2 d-e}-\frac {e \int \frac {1}{e x^2+d}dx}{c^2 d-e}\right )}{2 e}-\frac {a+b \arctan (c x)}{2 e \left (d+e x^2\right )}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {b c \left (\frac {c \arctan (c x)}{c^2 d-e}-\frac {\sqrt {e} \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d} \left (c^2 d-e\right )}\right )}{2 e}-\frac {a+b \arctan (c x)}{2 e \left (d+e x^2\right )}\)

input
Int[(x*(a + b*ArcTan[c*x]))/(d + e*x^2)^2,x]
 
output
-1/2*(a + b*ArcTan[c*x])/(e*(d + e*x^2)) + (b*c*((c*ArcTan[c*x])/(c^2*d - 
e) - (Sqrt[e]*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(Sqrt[d]*(c^2*d - e))))/(2*e)
 

3.12.59.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 303
Int[1/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[b/(b 
*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[d/(b*c - a*d)   Int[1/(c + d*x 
^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
 

rule 5509
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(q_.), x 
_Symbol] :> Simp[(d + e*x^2)^(q + 1)*((a + b*ArcTan[c*x])/(2*e*(q + 1))), x 
] - Simp[b*(c/(2*e*(q + 1)))   Int[(d + e*x^2)^(q + 1)/(1 + c^2*x^2), x], x 
] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1]
 
3.12.59.4 Maple [A] (verified)

Time = 0.51 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.09

method result size
parts \(-\frac {a}{2 e \left (e \,x^{2}+d \right )}-\frac {b \,c^{2} \arctan \left (c x \right )}{2 e \left (e \,c^{2} x^{2}+c^{2} d \right )}+\frac {b \,c^{2} \arctan \left (c x \right )}{2 \left (c^{2} d -e \right ) e}-\frac {b c \arctan \left (\frac {e x}{\sqrt {e d}}\right )}{2 \left (c^{2} d -e \right ) \sqrt {e d}}\) \(99\)
derivativedivides \(\frac {-\frac {a \,c^{4}}{2 e \left (e \,c^{2} x^{2}+c^{2} d \right )}+b \,c^{4} \left (-\frac {\arctan \left (c x \right )}{2 e \left (e \,c^{2} x^{2}+c^{2} d \right )}+\frac {-\frac {e \arctan \left (\frac {e x}{\sqrt {e d}}\right )}{\left (c^{2} d -e \right ) c \sqrt {e d}}+\frac {\arctan \left (c x \right )}{c^{2} d -e}}{2 e}\right )}{c^{2}}\) \(115\)
default \(\frac {-\frac {a \,c^{4}}{2 e \left (e \,c^{2} x^{2}+c^{2} d \right )}+b \,c^{4} \left (-\frac {\arctan \left (c x \right )}{2 e \left (e \,c^{2} x^{2}+c^{2} d \right )}+\frac {-\frac {e \arctan \left (\frac {e x}{\sqrt {e d}}\right )}{\left (c^{2} d -e \right ) c \sqrt {e d}}+\frac {\arctan \left (c x \right )}{c^{2} d -e}}{2 e}\right )}{c^{2}}\) \(115\)
risch \(\frac {i b \ln \left (i c x +1\right )}{4 e \left (e \,x^{2}+d \right )}-\frac {i c^{2} b \ln \left (\left (-i c x +1\right )^{2} e -c^{2} d -2 \left (-i c x +1\right ) e +e \right )}{8 \left (c^{2} d -e \right ) e}-\frac {i c b \,\operatorname {arctanh}\left (\frac {2 \left (-i c x +1\right ) e -2 e}{2 c \sqrt {e d}}\right )}{4 \left (c^{2} d -e \right ) \sqrt {e d}}-\frac {i c^{4} b \ln \left (-i c x +1\right ) x^{2}}{4 \left (c^{2} d -e \right ) \left (-e \,c^{2} x^{2}-c^{2} d \right )}-\frac {i c^{2} b \ln \left (-i c x +1\right )}{4 \left (c^{2} d -e \right ) \left (-e \,c^{2} x^{2}-c^{2} d \right )}+\frac {c^{2} a}{2 e \left (-e \,c^{2} x^{2}-c^{2} d \right )}-\frac {i b \,c^{2} \ln \left (c^{2} x^{2}+1\right )}{8 e \left (c^{2} d -e \right )}+\frac {b \,c^{2} \arctan \left (c x \right )}{4 \left (c^{2} d -e \right ) e}+\frac {i b \,c^{2} \ln \left (e \,x^{2}+d \right )}{8 e \left (c^{2} d -e \right )}-\frac {b c \arctan \left (\frac {e x}{\sqrt {e d}}\right )}{4 \left (c^{2} d -e \right ) \sqrt {e d}}\) \(354\)

input
int(x*(a+b*arctan(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 
output
-1/2*a/e/(e*x^2+d)-1/2*b*c^2*arctan(c*x)/e/(c^2*e*x^2+c^2*d)+1/2*b*c^2*arc 
tan(c*x)/(c^2*d-e)/e-1/2*b*c/(c^2*d-e)/(e*d)^(1/2)*arctan(e*x/(e*d)^(1/2))
 
3.12.59.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 234, normalized size of antiderivative = 2.57 \[ \int \frac {x (a+b \arctan (c x))}{\left (d+e x^2\right )^2} \, dx=\left [-\frac {2 \, a c^{2} d^{2} - 2 \, a d e - {\left (b c e x^{2} + b c d\right )} \sqrt {-d e} \log \left (\frac {e x^{2} - 2 \, \sqrt {-d e} x - d}{e x^{2} + d}\right ) - 2 \, {\left (b c^{2} d e x^{2} + b d e\right )} \arctan \left (c x\right )}{4 \, {\left (c^{2} d^{3} e - d^{2} e^{2} + {\left (c^{2} d^{2} e^{2} - d e^{3}\right )} x^{2}\right )}}, -\frac {a c^{2} d^{2} - a d e + {\left (b c e x^{2} + b c d\right )} \sqrt {d e} \arctan \left (\frac {\sqrt {d e} x}{d}\right ) - {\left (b c^{2} d e x^{2} + b d e\right )} \arctan \left (c x\right )}{2 \, {\left (c^{2} d^{3} e - d^{2} e^{2} + {\left (c^{2} d^{2} e^{2} - d e^{3}\right )} x^{2}\right )}}\right ] \]

input
integrate(x*(a+b*arctan(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 
output
[-1/4*(2*a*c^2*d^2 - 2*a*d*e - (b*c*e*x^2 + b*c*d)*sqrt(-d*e)*log((e*x^2 - 
 2*sqrt(-d*e)*x - d)/(e*x^2 + d)) - 2*(b*c^2*d*e*x^2 + b*d*e)*arctan(c*x)) 
/(c^2*d^3*e - d^2*e^2 + (c^2*d^2*e^2 - d*e^3)*x^2), -1/2*(a*c^2*d^2 - a*d* 
e + (b*c*e*x^2 + b*c*d)*sqrt(d*e)*arctan(sqrt(d*e)*x/d) - (b*c^2*d*e*x^2 + 
 b*d*e)*arctan(c*x))/(c^2*d^3*e - d^2*e^2 + (c^2*d^2*e^2 - d*e^3)*x^2)]
 
3.12.59.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x (a+b \arctan (c x))}{\left (d+e x^2\right )^2} \, dx=\text {Timed out} \]

input
integrate(x*(a+b*atan(c*x))/(e*x**2+d)**2,x)
 
output
Timed out
 
3.12.59.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x (a+b \arctan (c x))}{\left (d+e x^2\right )^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x*(a+b*arctan(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.12.59.8 Giac [F]

\[ \int \frac {x (a+b \arctan (c x))}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )} x}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x*(a+b*arctan(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 
output
sage0*x
 
3.12.59.9 Mupad [B] (verification not implemented)

Time = 0.96 (sec) , antiderivative size = 696, normalized size of antiderivative = 7.65 \[ \int \frac {x (a+b \arctan (c x))}{\left (d+e x^2\right )^2} \, dx=\frac {b\,c\,\ln \left (e\,x+\sqrt {-d\,e}\right )\,\sqrt {-d\,e}}{4\,d\,e^2-4\,c^2\,d^2\,e}-\frac {2\,b\,c^2\,\mathrm {atan}\left (-\frac {\frac {c^2\,\left (c^8\,e\,x+\frac {c^2\,\left (2\,c^5\,e^3-4\,c^7\,d\,e^2+2\,c^9\,d^2\,e+\frac {c^2\,x\,\left (8\,c^{10}\,d^3\,e^2-8\,c^8\,d^2\,e^3-8\,c^6\,d\,e^4+8\,c^4\,e^5\right )\,1{}\mathrm {i}}{4\,e^2-4\,c^2\,d\,e}\right )\,1{}\mathrm {i}}{4\,e^2-4\,c^2\,d\,e}\right )}{4\,e^2-4\,c^2\,d\,e}-\frac {c^2\,\left (-c^8\,e\,x+\frac {c^2\,\left (2\,c^5\,e^3-4\,c^7\,d\,e^2+2\,c^9\,d^2\,e-\frac {c^2\,x\,\left (8\,c^{10}\,d^3\,e^2-8\,c^8\,d^2\,e^3-8\,c^6\,d\,e^4+8\,c^4\,e^5\right )\,1{}\mathrm {i}}{4\,e^2-4\,c^2\,d\,e}\right )\,1{}\mathrm {i}}{4\,e^2-4\,c^2\,d\,e}\right )}{4\,e^2-4\,c^2\,d\,e}}{\frac {c^2\,\left (c^8\,e\,x+\frac {c^2\,\left (2\,c^5\,e^3-4\,c^7\,d\,e^2+2\,c^9\,d^2\,e+\frac {c^2\,x\,\left (8\,c^{10}\,d^3\,e^2-8\,c^8\,d^2\,e^3-8\,c^6\,d\,e^4+8\,c^4\,e^5\right )\,1{}\mathrm {i}}{4\,e^2-4\,c^2\,d\,e}\right )\,1{}\mathrm {i}}{4\,e^2-4\,c^2\,d\,e}\right )\,1{}\mathrm {i}}{4\,e^2-4\,c^2\,d\,e}+\frac {c^2\,\left (-c^8\,e\,x+\frac {c^2\,\left (2\,c^5\,e^3-4\,c^7\,d\,e^2+2\,c^9\,d^2\,e-\frac {c^2\,x\,\left (8\,c^{10}\,d^3\,e^2-8\,c^8\,d^2\,e^3-8\,c^6\,d\,e^4+8\,c^4\,e^5\right )\,1{}\mathrm {i}}{4\,e^2-4\,c^2\,d\,e}\right )\,1{}\mathrm {i}}{4\,e^2-4\,c^2\,d\,e}\right )\,1{}\mathrm {i}}{4\,e^2-4\,c^2\,d\,e}}\right )}{4\,e^2-4\,c^2\,d\,e}-\frac {b\,\mathrm {atan}\left (c\,x\right )}{2\,e\,\left (e\,x^2+d\right )}-\frac {b\,c\,\ln \left (e\,x-\sqrt {-d\,e}\right )\,\sqrt {-d\,e}}{4\,\left (d\,e^2-c^2\,d^2\,e\right )}-\frac {a}{2\,e^2\,x^2+2\,d\,e} \]

input
int((x*(a + b*atan(c*x)))/(d + e*x^2)^2,x)
 
output
(b*c*log(e*x + (-d*e)^(1/2))*(-d*e)^(1/2))/(4*d*e^2 - 4*c^2*d^2*e) - (2*b* 
c^2*atan(-((c^2*((c^2*(2*c^5*e^3 - 4*c^7*d*e^2 + 2*c^9*d^2*e + (c^2*x*(8*c 
^4*e^5 - 8*c^6*d*e^4 - 8*c^8*d^2*e^3 + 8*c^10*d^3*e^2)*1i)/(4*e^2 - 4*c^2* 
d*e))*1i)/(4*e^2 - 4*c^2*d*e) + c^8*e*x))/(4*e^2 - 4*c^2*d*e) - (c^2*((c^2 
*(2*c^5*e^3 - 4*c^7*d*e^2 + 2*c^9*d^2*e - (c^2*x*(8*c^4*e^5 - 8*c^6*d*e^4 
- 8*c^8*d^2*e^3 + 8*c^10*d^3*e^2)*1i)/(4*e^2 - 4*c^2*d*e))*1i)/(4*e^2 - 4* 
c^2*d*e) - c^8*e*x))/(4*e^2 - 4*c^2*d*e))/((c^2*((c^2*(2*c^5*e^3 - 4*c^7*d 
*e^2 + 2*c^9*d^2*e + (c^2*x*(8*c^4*e^5 - 8*c^6*d*e^4 - 8*c^8*d^2*e^3 + 8*c 
^10*d^3*e^2)*1i)/(4*e^2 - 4*c^2*d*e))*1i)/(4*e^2 - 4*c^2*d*e) + c^8*e*x)*1 
i)/(4*e^2 - 4*c^2*d*e) + (c^2*((c^2*(2*c^5*e^3 - 4*c^7*d*e^2 + 2*c^9*d^2*e 
 - (c^2*x*(8*c^4*e^5 - 8*c^6*d*e^4 - 8*c^8*d^2*e^3 + 8*c^10*d^3*e^2)*1i)/( 
4*e^2 - 4*c^2*d*e))*1i)/(4*e^2 - 4*c^2*d*e) - c^8*e*x)*1i)/(4*e^2 - 4*c^2* 
d*e))))/(4*e^2 - 4*c^2*d*e) - (b*atan(c*x))/(2*e*(d + e*x^2)) - (b*c*log(e 
*x - (-d*e)^(1/2))*(-d*e)^(1/2))/(4*(d*e^2 - c^2*d^2*e)) - a/(2*d*e + 2*e^ 
2*x^2)